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Abstract. In this paper we present a tabu approach for a version of the Sports
League Scheduling Problem. The approach adopted is based on a formulation
of the problem as a Constraint Satisfaction Problem (CSP). Tests were carried
out on problem instances of up to 40 teams representing 780 integer variables
with 780 values per variable. Experimental results show that this approach
outperforms some existing methods and is one of the most promising methods
for solving problems of this type.

1 Introduction

Many sports leagues (e.g. soccer, hockey, basketball) must deal with scheduling
problems for tournaments. These scheduling problems contain in general many
conflicting constraints to satisfy and different objectives to optimize, like
minimization of traveling distance [2], only one match per team and per day,
stadium unavailability at particular dates, minimum number of days between a home
match and its corresponding away match, etc. Generating satisfactory schedules
with respect to these conditions and objectives is therefore a very difficult problem
to solve.

Many studies have been carried out to try to solve these problems with a variety
of approaches and varying degrees of success: integer linear programming [7][12],
constraint programming [10][17], local search (simulated annealing [19], tabu
search [23], hybrid approach [4]).

This paper deals with a specific Sports League Scheduling Problem (SLSP)
described by K. McAloon, C. Tretkoff and G. Wetzel in [11]. After having obtained
poor results in integer linear programming tests, they experimented with constraint
programming, an approach that produced better results. Finally, with a basic local
search algorithm, they produced the same results as ILOG Solver does, but with less
computing time.

C.P. Gomes, B. Selman and H.A. Kautz [9] obtained better results than those of
McAloon et al. using constraint programming. With a randomized version of a
deterministic complete search they solved problems involving a greater number of
teams.



J.C. Régin proposed two approaches with constraint programming for the SLSP
[15][16]. The first one, using powerful filtering algorithms [3][13][14], produced
better results than those of McAloon et al. and those of Gomes et al. in terms of
execution time and robustness, since it solved problem instances of a larger size.
Using a second approach, he transformed the SLSP into an equivalent problem by
adding an implicit constraint. With a new heuristic and specific filtering algorithms,
he improved on his own results.

Finally, let us mention the work done by G. Wetzel and F. Zabatta [22]: using
multiple threads on a 14 processor Sun system they obtained better results than the
first approach of Régin. They were, however, not able to solve problems as large as
those which Régin solved with his second approach.

The goal of this study is to propose an advanced local search approach based on
tabu search (TS) [8] for the SLSP. References of the study are results presented in
[11], [15] and [16].

The paper begins by formally describing the SLSP (§2). After modeling the
problem as a constraint satisfaction problem (CSP) [20] (§3), we present our tabu
algorithm (§4) and compare its results with those of [11], [15] and [16] (§5). Before
concluding, we discuss some observations made during this work (§6).

2 Problem Descr iption

In the rest of the paper, we will deal with the following constraints and definitions,
the same as in [11]:
•  There are |T| teams (|T| even), where T is the set of all teams. All teams play each

other exactly once (half competition);
•  The season lasts |T| - 1 weeks;
•  Every team plays one game in every week of the season;
•  There are |T| / 2 periods and, each week, one game is scheduled in every period;
•  No team plays more than twice in the same period over the course of the season.

The problem then is to schedule the tournament with respect to all these
constraints.

Table 1 below shows an example of a valid schedule for |T| = 8 teams labeled
from 1 to 8; there are 7 weeks and 4 periods.

Table 1. Example of a valid schedule for 8 teams

Weeks
1 2 3 4 5 6 7

1 1 vs 2 1 vs 3 5 vs 8 4 vs 7 4 vs 8 2 vs 6 3 vs 5
2 3 vs 4 2 vs 8 1 vs 4 6 vs 8 2 vs 5 1 vs 7 6 vs 7
3 5 vs 6 4 vs 6 2 vs 7 1 vs 5 3 vs 7 3 vs 8 1 vs 8

Pe
ri

od
s

4 7 vs 8 5 vs 7 3 vs 6 2 vs 3 1 vs 6 4 vs 5 2 vs 4

As shown in Table 1, a configuration may be represented as a two-dimensional
array with weeks in columns and periods in rows. Each column satisfies the
cardinality constraint: each team appears exactly once, i.e. all the teams are



different. In each row, no team appears more than twice. There is also a global
constraint on the array: each match only appears once, i.e. all matches are different.

3 Problem Formulation

To represent the SLSP we follow the constraint programming approach: we consider
it as a constraint satisfaction problem.

3.1 Constraint Satisfaction Problem - CSP

A constraint satisfaction problem [20] is defined by a triplet (X, D, C) with:
•  A finite set X of n variables: X = { X1, ... , Xn} ;
•  A set D of associated domains: D = { D1, ... , Dn} . Each domain Di specifies the

finite set of possible values of the variable X i;
•  A finite set C of p constraints: C = { C1, ... , Cp} . Each constraint is defined for a

set of variables and specifies which combinations of values are compatible for
these variables.
Given such a triplet, the problem is to generate a complete assignment of the

values to the variables, which satisfies all the constraints: such an assignment is said
to be consistent. Since the set of all assignments (not necessarily consistent) is
defined by the Cartesian product D1 × ... × Dn of the domains, solving a CSP means
to determine a particular assignment among a potentially huge number of possible
assignments.

The CSP, as it has been formalized, is a powerful and general model. In fact, it
can be used to conveniently model some well-known problems such as k-coloring
and satisfiability, as well as many practical applications relating to resource
assignment, planning or timetabling.

3.2 Formulation of the SLSP as a CSP

We will use the following notations to represent the SLSP as a constraint
satisfaction problem:
•  P: set of periods, |P| = |T| / 2;
•  W: set of weeks, |W| = |T| - 1;
•  tn: team number n, tn ∈  T, 1 ≤ n ≤ |T|;
•  x(tm, tn): schedule of the match tm vs. tn. Values of this variable type are of

(pm, n, wm, n) pattern, meaning that the match is scheduled in period pm, n and week
wm, n.
The set of variables is naturally X = { x(tm, tn), 1 ≤ m < n ≤ |T|}  and all domains

are equal to D = { (pm, n, wm, n), pm, n ∈  P, 1 ≤ pm, n ≤ |P|, wm, n ∈  W, 1 ≤ wm, n ≤ |W|} ;
∀  x ∈  X, Dx = D. The set C of constraints contains the following three types of
constraints:



•  Uniqueness of all teams in each week. For each team tn, tn ∈  T, 1 ≤ n ≤ |T|, we
impose the constraint: WEEK(tn) ⇔ wm, n ≠ wq, n, ∀  (m, q) ∈  [1; |T|]2, m ≠ n, q ≠ n
and m ≠ q;

•  No more than two matches for each team in the same period. For each team tn,
tn ∈  T, 1 ≤ n ≤ |T| and each period, we impose the constraint:
PERIOD(tn) ⇔ |{ pm, n = pq, n, (m, q) ∈  [1; |T|]2, m ≠ n, q ≠ n et m ≠ q} | ≤ 1;

•  All matches are different. For each match < tm, tn >, (tm, tn) ∈  T², tm ≠ tn, we
impose the constraint: ALLDIFF(< tm, tn >) ⇔ < tm, tn > ≠ < tq, tr >, ∀  (tq, tr) ∈  T²,
tq ≠ tr.
The WEEK and ALLDIFF constraints are always satisfied in our algorithm.

4 Solving the SLSP with Tabu Search

Tabu search is an advanced local search method using general mechanisms and rules
as guidelines for smart search. Readers may find formal description of the method
in [8]. We now define the components of our tabu algorithm for the SLSP, called
TS-SLSP.

4.1 Search Space – Configuration

As represented in Table 1, a configuration is a complete assignment of D = { (pm, n,
wm, n), pm, n ∈  P, 1 ≤ pm, n ≤ |P|, wm, n ∈  W, 1 ≤ wm, n ≤ |W|}  items to variables of
X = { x(tm, tn), 1 ≤ m < n ≤ |T|} . Thus, a configuration is a |W| *  |P| sized table, whose
items are integer couples (m, n), 1 ≤ m < n ≤ |T|. For |T| = 40 teams, this represents a
problem with 780 variables and 780 values per variable.

There are |T| / 2 *  (|T| - 1) matches to be scheduled. A schedule can be thought of
as a permutation of these matches. So, for |T| teams, the search space size is
[|T| / 2 *  (|T| - 1)]! In other words, the search space size grows as the factorial of the
square of |T| / 2.

Fig. 1. Constructing initial configuration (|T| = 6)



4.2 Initial Configuration

In local search algorithms, the initial configuration specifies where the search begins
in the search space. One can start with a random configuration by first creating all
the |T| / 2 *  (|T| - 1) matches with respect to the ALLDIFF constraint, then randomly
assigning a match to each (w, p) couple, w ∈  W, p ∈  P.

We chose another way to build an initial configuration, inspired from [18]:
construct a complete graph with the first |T| - 1 teams as vertices while placing the
vertices in order to form a regular (|T| - 1)-gon (edges represent matches). Color the
edges around the boundary using a different color for each edge. The remaining
edges can be colored by assigning to each one the same color as that used for the
boundary edge parallel to it, see left drawing in Fig. 1. At each vertex there will be
exactly one color missing and these missing colors are different. The edge of the
complete graph incident to the last vertex (i.e. the last team) can be colored using
these missing colors, see right drawing in Fig. 1. Finally, fill in week “ i” , in the
initial configuration, with edges colored “ i” .

This initial configuration has the property of satisfying the WEEK and ALLDIFF
constraints. The algorithm will try to satisfy the PERIOD constraint.

4.3 Neighborhood

Let s be a configuration from the search space S. The neighborhood N: S → 2s is an
application such as for each s ∈  S, s' ∈  N(s) if and only if s and s' only differ by
values of a single couple of variables, with at least one in conflict (a variable is said
to be conflicting if it is involved in an unsatisfied constraint).

A neighboring configuration of s can be obtained by making a single swap of
current values of two arbitrary variables, with at least one conflicting in s. A move
from configuration s to a neighboring configuration s' can then be described by a
couple < x(tm, tn), x(tq, tr) > i.e. swapping two matches (see Fig. 2). In addition, swaps
are made in the same week to keep the WEEK constraint satisfied.

During the search the neighborhood size always evolves with the number of
conflicts.

Weeks Weeks
1 2 3 4 5 1 2 3 4 5

1,2 2,6 3,4 5,6 2,4 1 1 1,2 2,6 3,4 5,6 1,5
4,6 1,3 2,5 1,4 3,6 2 2 4,6 1,3 2,5 1,4 3,6
3,5 4,5 1,6 2,3 1,5 3 Pe

ri
od

s

3 3,5 4,5 1,6 2,3 2,4
Configuration s Configuration s'

Fig. 2. Neighborhood illustration (6 teams)



4.4 Evaluation Function

To compare, in terms of quality, two configurations s and s’ from S, we define an
evaluation function which is an order relation for S.

Let OccPS(p, tn) be the occurrence number of team tn, in period p, in configuration
s. The evaluation function f(s) is the total number of excess appearances of all teams
in all periods (let us call it fP(s)) i.e. the minimum number of variables to be changed
to satisfy the PERIOD constraint:
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Solving the SLSP means finding a configuration s*  ∈  S such as f(s* ) = 0.

4.5 Neighborhood Evaluation

The tabu algorithm considers in general at each step the whole neighborhood. So it
is imperative to be able to quickly evaluate the cost of neighboring configurations.
To do this, we used a technique inspired by [6].

Let δ be a |X| *  |X| matrix. Each entry δ[x(tm, tn), x(tq, tr)] represents the effect of
the chosen move (swapping matches < tm, tn > and < tq, tr >) on the evaluation
function. Thus, the cost of s’ ∈  N(s) is immediately obtained by adding the proper
entry of δ to f(s) (in O(1)). To get the best neighbor, one search only a subset of the

δ matrix in O(|N(s)|) time. After a move, the δ matrix is updated in O(|X| |X|) time
in the worst case.

4.6 Tabu L ist Management

A fundamental component of TS is tabu list: a special, short-term memory that
maintains a selective history, composed of previously encountered configurations or
more generally pertinent attributes of such configurations. The aim of a tabu list is
to avoid cycling and go beyond local optima.

Entries in our tabu list are paired matches. Indeed, we make match swaps. After
swapping, the matched couple is classified tabu for the next k iterations (k, called
tabu tenure, is problem dependent), which means that reverse swap is forbidden
during that period.

Tabu tenure plays a very important role for the performance of a tabu algorithm.
If overestimated, it will perhaps incorrectly prohibit the visiting of unexplored
configurations and the method’s capacity to explore the neighborhood will be
reduced. If underestimated, the method may get trapped in local optima.



After having tried various tabu tenures (randomized and bounded, dynamic, static
etc.), we chose a randomized one. For s ∈  S, we define the tabu tenure ks by:
ks = rand(g) where rand(g) is a random integer from [1; g], g ∈  [4; 100].

To implement the tabu list, we use a |X| *  |X| matrix with entries corresponding to
moves. Each entry stores the current iteration number plus the tabu tenure. With this
data structure, a single comparison with the current iteration number is sufficient to
know if a move is tabu.

Nevertheless, note that a tabu move leading to a configuration better than the best
configuration found so far is always accepted (aspiration criterion).

Input: |T|; {number of teams}
Output: a valid schedule or "No valid schedule found";
var f, f*; {evaluation function and its best value

encountered so far}
s, s*; {current configuration and the best

configuration encountered so far}
begin
initialize the tabu list to empty;
generate initial configuration s; {§4.2}
s* := s;
f* := f(s);
while not Stop Condition do

make a best move m in the same week such that m is
not tabu or satisfies the aspiration criterion;
introduce m in the tabu list;
if (f(s) < f*) then

s* := s;
f* := f(s);

else if f* has not been improved for a sufficient
time then

s = s*; {intensification}
set the tabu list to empty; {diversification}

if (f* = 0) then {valid schedule found}
return s*;

return "No valid schedule found";
end

Fig. 3. The TS-SLSP algorithm

4.7 Diversification – Intensification

Intensification and diversification are useful techniques for improving the search
power of a tabu algorithm.

Intensification stores interesting properties of the best configurations found so far
and to be used later. It may initiate a return to attractive regions to search them more
thoroughly. Diversification tries to direct the search to unexplored configurations.

Our TS algorithm includes a single intensification: after a certain number of
non-improving iterations, we return to the best configuration found so far. The



difficulty then is to formally determine when to go back to this best configuration,
because an underestimated interval might inadvertently stop a possibly promising
search. Values of this parameter were determined empirically in [30; 1 000].

We make a diversification immediately after an intensification process by
removing all tabu statuses to enable previously classified tabu moves.

4.8 General Algor ithm

The TS-SLSP algorithm (see Fig. 3) begins with an initial configuration in a search
space S built with respect to WEEK and ALLDIFF constraints.

Then it proceeds iteratively to visit a series of locally best configurations
following the neighborhood. At each iteration, a best move m (in the same week to
keep the WEEK constraint satisfied) is applied to the current configuration, even if
it does not improve the current configuration in terms of the value of the evaluation
function. Intensification / diversification steps are performed after a sufficient
number of  non-improving moves.

Stop Condition. The algorithm stops if f(s) = 0 (a valid schedule is found) or if a
given limit is reached concerning the number of moves.

5 Computational Results

In this section, we compare results of our TS algorithm with those of [11], [15]
and [16]. Our tests were carried out on a Sun Sparc Ultra 1 (256 RAM, 143 MHz).
TS-SLSP1 is implemented in C (CC compiler with -O5 option). Tests were carried
out on problem instances including 6 to 40 teams (only those greater than 14 are
shown). The TS-SLSP algorithm was allowed to run until a maximum number of 10
million iterations.

5.1 Compar ison Cr iter ia

We used three main criteria to do the comparative study. These criteria are given
here in decreasing order of importance:
•  Number |T| of teams: one algorithm is said to be more efficient than another one,

if it solves the SLSP with a higher |T|;
•  Number of moves: the algorithm’s effort to find a solution, machine independent;
•  Running time: the CPU time spent by an algorithm to carry out a given number of

moves, machine dependent.

         

1 For the source code of TS-SLSP, contact the authors.



5.2 Comparative Results

McAloon et al. [11] recall that Integer Linear Programming (ILP) with CPLEX [5]
was not able to solve the SLSP for |T| = 14 teams, even when avoiding symmetries.
Nevertheless, the method is able to provide solutions for |T| ≤ 12. They also propose
a constraint programming algorithm, implemented under ILOG Solver, which
solved the |T| = 14 problem in 45 minutes (Ultra Sparc), and was the first result
obtained with constraint programming. However, their Constraint Logic
Programming approach failed for |T| = 14. Finally, with a basic local search
algorithm, they solved the |T| = 14 problem in 10 minutes.

Gomes et al. [9] used constraint programming to solve the SLSP up to 18 teams
(in more than 48 hours) with a deterministic complete search. By including
randomness in their algorithm, they reached the same result more quickly:
approximately 22 hours for 18 teams.

In 1998, Régin presented improved results with a more elaborate approach based
on constraint propagation [15] (let us call the approach CP1). This approach
integrates advanced techniques including symmetries elimination and new powerful
filtering algorithms based on arc consistency [3][13][14]. CP1 solves much larger
problem instances since it is able to produce valid schedules for |T| = 24 in 12 hours.

In yet another study, by using multiple threads on a 14 processor Sun system,
Wetzel and Zabatta [22] obtain better results, since schedules were generated for 26
and 28 teams.

Recently, Régin proposed another improved approach [16] (let us call it CP2)
integrating among others, a heuristic based on Euler's theorem for Latin squares.
The SLSP is also transformed into an equivalent problem by adding a dummy week
in order to quickly deduce some inconsistencies. This later approach gives the best-
known results for the SLSP, since it produces solutions for 40 teams in 6 hours.

Table 2. Comparative results of TS-SLSP and well-known methods. A “ -“  sign means no
result is available

CP1 CP2 TS-SLSP

|T| Time Backtracks Time (s) Backtracks Success
Ratio (%)

Time Moves

16 4.2 s 1 112 0.6 182 100 0.5 s 4 313
18 36 s 8 756 0.9 263 100 0.3 s 2 711
20 < 6 min 72 095 1.2 226 100 23.9 s 149 356
22 10 h 6 172 672 1.2 157 100 34.3 s 163 717
24 12 h 6 391 470 10.5 2 702 90 5 min 1 205 171
26 - - 26.4 5 683 50 10.7 min 2 219 711
28 - - 316 32 324 50 12.5 min 2 043 353
30 - - 138 11 895 10 22 min 3 034 073
32 - - - - 10 49 min 6 387 470
34 - - - - 30 25 min 2 917 279
36 - - - - 10 1.5 h 9 307 524
40 - - 6 h 2 834 754 10 54.3 s 68 746



Table 2 shows the results of TS-SLSP together with those of CP1 and CP2.
Columns 2-5 give respectively, for CP1 and CP2, execution times and numbers of
backtracks. The last three columns give respectively the success ratio (number of
successful runs / total number of runs), mean times and average numbers of moves
for successful runs of TS-SLSP.

From the Table 2, we may make several remarks. First, we observe that TS-SLSP
is much more powerful than CP1 both in terms of the size of problem instances
solved and computing efforts. Compared with CP2, TS-SLSP also manages to find
valid schedules for problem instances going up to 40 teams. We notice however that
the resolution becomes much more difficult for |T| > 28. We notice also that the
running time of the TS-SLSP algorithm for |T| = 40 is not consistent with other
results. This is simply explained by the stochastic nature of the TS-SLSP algorithm.
Globally, the results of TS-SLSP are consistent and its running times remain
reasonable.

6 Discussions

How to handle the different constraints of a constrained problem is an important
issue that must be answered by any neighborhood algorithm. For the SLSP, recall
that there are three types of constraints (see §3.2): WEEK, PERIOD and ALLDIFF.

As we saw previously in §4, TS-SLSP works with a limited search space whose
configurations satisfy already the WEEK and ALLDIFF constraints. The goal of
TS-SLSP is then to satisfy the PERIOD constraint.

We also experimented with another constraint handling technique, in which the
search space is defined by all the configurations satisfying the ALLDIFF constraint,
and the search starts with a randomized initial configuration (see §4.2). Then the
algorithm tries to satisfy the WEEK and PERIOD constraints. In this case, the
evaluation function f '(s) used to guide the search is defined by a weighted2

summation function of the violations of the WEEK constraint fW(s), formally
described by formula 2 below3, and PERIOD constraint fP(s) (see formula 1 in §4.4):
∀  s ∈  S, f '(s) = 2 *  fW(s) + fP(s).
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2 It seems that the best weight values are 1 for PERIOD and 2 for WEEK.
3 OccWS(w, tn) is the occurrence number of team tn on week w in configuration s.



The neighborhood is extended to all possible exchanges of matches (with at least
one in conflict) in the same week or in the same period or in different periods and
weeks, see Fig. 4.

The tabu tenure is weighted and dynamic: k ’S = α *  [fW(s) + fP(s)] + rand(g),
α ∈  [0.1; 1]. Intensification and diversification processes are used in the same way
as in TS-SLSP.

Weeks
1 2 3 4 5 6 7

1 1 vs 3 1 vs 2 5 vs 8 1 vs 5 4 vs 8 2 vs 6 3 vs 5
2 3 vs 4 2 vs 8 1 vs 4 6 vs 8 2 vs 5 1 vs 7 6 vs 7
3 5 vs 6 4 vs 6 2 vs 7 4 vs 7 3 vs 7 3 vs 8 1 vs 8Pe

ri
od

s

4 7 vs 8 5 vs 7 3 vs 6 2 vs 3 1 vs 6 4 vs 5 2 vs 4

Fig. 4. Extended neighborhood illustration

Experimentation using this technique produces results similar to those of CP1.
Although it fails to solve the |T| > 22 problem, this technique is very fast for 22
teams: it provides solutions in less than 28 minutes (34 146 moves). When only
dealing with the PERIOD constraint, TS-SLSP outperforms results of this technique,
since it solves the SLSP up to 40 teams. The main difference between the two
approaches is the structure of the initial configuration. The technique starting with
an extra constraint to verify (the WEEK constraint) must explore a larger search
space than the other technique.

7 Conclusion

In this paper we presented a tabu algorithm (TS-SLSP) for the sports league
scheduling problem. The algorithm is based on a CSP formulation of the SLSP and
includes the following main features:
•  a simple swap neighborhood;
•  efficient data structures for fast neighborhood search;
•  a dynamic tabu tenure;
•  a simple intensification-diversification process.

TS-SLSP was tested on problem instances going up to 40 teams. The
experimental results show that TS-SLSP largely outperforms some previously
developed approaches (ILP [11], basic LS [11] and constraint programming [9][15]).
Indeed, while these approaches are limited to instances of 24 teams, TS-SLSP is
able to find a schedule for instances going up to 40 teams. This result compares well
with the best-known approach, which combines well-elaborated constraint
propagation algorithms and a non-trivial formulation of the initial problem [16].

At the same time, the computing times required by TS-SLSP are much greater
than those obtained using the most efficient algorithm. Nevertheless, there is
certainly plenty of room for improvement in TS-SLSP. One possible enhancement
would be to integrate more elaborate intensification and diversification mechanisms,
another would be to have a close study of configuration structures in order to devise



clever neighborhoods and constraint handling techniques. It would also be
interesting to envisage a combination of some advanced constraint propagation
techniques with tabu search.

This work underlines once again the importance of efficient data structures for
the high performance of a TS algorithm. It also confirms that parameter setting is
crucial for obtaining quality solutions.

The TS-SLSP may also be adaptable to other sports scheduling problems e.g. the
minimization of breaks (two consecutive home or away matches) [21] and those
studied in [17]. Let us also mention that TS has already proven efficient for solving
some sports scheduling problems, with constraints of various types. A hybrid tabu
search has been proposed [4] to respond to the National Hockey League’s
scheduling problem, which underlines the effectiveness of a TS / genetic algorithm
combination; the skilful mix of elements of the two methods produces better results
than those of separately considered methods. All these studies suggest that a
metaheuristic approach (e.g. TS, simulated annealing, genetic hybrid) has good
potential for solving various planning and scheduling problems related to sporting
events.4
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Appendix:

The table in the next page gives a solution to the Sports League Scheduling Problem
found by TS-SLSP for 40 teams.



Periods

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

2141 2022 1923 636 1725 1626 1527 1428 1329 1230 1131 1032 1824 438 735 933 537 834 339 12 1

1628 2123 2024 1925 1826 1727 2240 1529 1430 1331 1232 1133 1034 935 836 737 638 539 14 23 2

2026 2224 2125 2340 1927 1828 1729 1630 1531 1432 1333 1234 1135 16 937 838 739 1036 25 34 3

1929 2325 2226 2127 2028 2440 1830 1335 1632 1533 1434 1731 1236 27 1038 939 18 1137 36 45 4

29 2426 2327 2228 2129 2030 47 1832 1733 1634 1535 1436 1337 1238 1139 110 2540 38 1931 56 5

1537 2527 2428 2329 2230 2131 2032 1933 1834 1735 1636 2640 1438 1339 112 211 310 49 58 67 6

114 2628 2529 1539 510 2232 2133 2034 1935 1836 1737 1638 2430 2740 213 312 411 2331 69 78 7

710 2729 2630 2531 2432 2333 1937 1739 2036 2840 1838 2135 116 215 314 413 512 611 2234 89 8

2940 2830 2731 2632 2533 2424 2335 2236 2137 2038 1939 118 217 316 415 514 613 712 811 910 9

318 2931 2832 2733 2634 2535 2436 219 2238 2139 120 2337 3040 813 516 615 714 417 912 1011 10

2339 3032 2933 2834 2735 2636 2537 2438 3140 122 221 320 419 518 617 716 815 914 1013 1112 11

1213 3133 3034 2935 2836 2737 2638 421 124 1015 322 2539 520 619 718 817 916 223 1114 3240 12

621 3234 3135 918 2937 2838 1314 126 225 324 423 522 3340 1116 819 3036 1017 720 1215 2739 13

524 3335 3236 3137 3038 2939 128 623 326 425 3440 227 722 821 920 1019 1118 1217 1316 1415 14

3337 3436 3540 3238 3139 130 229 328 427 526 625 724 823 922 1021 1120 1219 1318 1417 1516 15

825 3537 3438 924 132 231 330 429 528 627 726 3640 3339 1023 1122 1221 1320 1419 1518 1617 16

3539 3638 3740 134 233 332 1619 530 629 431 827 926 1025 1124 1223 1322 1421 1520 728 1718 17

1720 3739 136 235 334 433 532 1027 730 829 928 631 1126 1225 1324 1423 1522 1621 3840 1819 18

831 138 237 336 435 534 633 732 3940 930 1029 1128 1227 1722 1425 1524 1623 1326 1821 1920 19

536 239 338 437 1823 635 734 833 932 1922 1130 1229 1328 1427 1526 1625 1724 140 1031 2021 20

1627 13 439 538 637 736 835 934 1033 1132 1231 1330 1429 1528 240 1726 1825 1924 2023 2122 21

738 24 15 1530 340 837 936 1431 1134 1233 1332 1035 639 2025 1728 1827 1926 1629 2124 2223 22

1334 35 26 17 839 938 440 1136 1235 1037 1433 1532 1631 1730 1829 1928 2027 2126 2225 2324 23

1534 46 37 28 19 1039 1138 1237 1336 1435 540 1633 1732 1831 1930 2029 2128 2227 2326 2425 24

1833 57 48 2130 210 111 1239 1338 1437 2328 1635 1734 39 1932 2031 640 2229 1536 2427 2526 25

311 68 59 410 740 212 2627 1835 1538 1637 1736 1439 1934 2033 2132 2231 2330 2429 2528 113 26

1936 79 610 511 412 313 214 840 1639 1738 1837 115 2035 2134 2233 2332 2431 2530 2629 2728 27

2532 810 711 612 513 414 315 216 117 1839 1938 2037 2136 2631 2334 2433 940 2235 2730 2829 28

911 1040 812 713 614 515 2831 317 218 119 2039 2138 2237 2336 2435 2534 2633 2732 416 2930 29

1012 1140 913 814 715 616 517 2239 319 220 121 418 2338 2437 2536 2635 2734 2833 2932 3031 30

3132 1113 1014 2439 816 717 618 123 420 321 222 519 915 2934 2637 2736 2835 2538 3033 1240 31

422 1214 1115 1016 917 818 3134 620 521 1340 323 224 125 2639 2738 2837 2936 3035 719 3233 32

127 1315 1216 1117 3136 919 820 721 622 523 424 325 226 1440 2839 2938 3037 1018 3235 3334 33

426 1416 1317 1218 1119 1020 921 1540 723 624 525 822 327 3237 129 3039 3138 228 3336 3435 34

230 1517 1418 1319 1220 1121 1022 527 824 725 626 923 428 329 1640 131 3239 3338 3437 3536 35

3538 1618 1519 1420 1321 1222 1123 1024 925 826 727 628 529 430 331 232 133 3439 1740 3637 36

630 1719 1620 333 1422 1323 1224 1125 1026 927 828 729 1521 135 432 1840 234 531 3639 3738 37

1424 1820 1721 1622 1523 1940 1325 1226 1127 236 929 830 731 1028 533 434 335 632 137 3839 38

1723 1921 1822 2040 1624 1525 139 931 1228 1129 1030 1327 832 733 634 535 436 337 238 1426 39
W
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