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Abstract. In this paper we present a tabu approach for a version of the Sports
League Scheduling Problem. The approach adopted is based on a formulation
of the problem as a Constraint Satisfaction Problem (CSP). Tests were carried
out on problem instances of up to 40 teams representing 780 integer variables
with 780 values per variable. Experimental results show that this approach
outperforms some existing methods and is one of the most promising methods
for solving problems of thistype.

1 Introduction

Many sports leagues (e.g. soccer, hockey, basketball) must deal with scheduling
problems for tournaments. These scheduling problems contain in general many
conflicting constraints to satisfy and different objectives to optimize, like
minimization of traveling distance [2], only one match per team and per day,
stadium unavailability at particular dates, minimum number of days between a home
match and its corresponding away match, etc. Generating satisfactory schedules
with respect to these conditions and objectives is therefore a very difficult problem
to solve.

Many studies have been carried out to try to solve these problems with a variety
of approaches and varying degrees of success. integer linear programming [7][12],
congtraint programming [10][17], local search (smulated annealing [19], tabu
search [23], hybrid approach [4]).

This paper deals with a specific Sports League Scheduling Problem (SLSP)
described by K. McAloon, C. Tretkoff and G. Wetzel in [11]. After having obtained
poor results in integer linear programming tests, they experimented with constraint
programming, an approach that produced better results. Finally, with a basic local
search algorithm, they produced the same results as ILOG Solver does, but with less
computing time.

C.P. Gomes, B. Selman and H.A. Kautz [9] obtained better results than those of
McAloon et al. using constraint programming. With a randomized version of a
deterministic complete search they solved problems involving a greater number of
teams.



J.C. Régin proposed two approaches with constraint programming for the SLSP
[15][16]. The first one, using powerful filtering algorithms [3][13][14], produced
better results than those of McAloon et al. and those of Gomes et al. in terms of
execution time and robustness, since it solved problem instances of a larger size.
Using a second approach, he transformed the SLSP into an equivalent problem by
adding an implicit constraint. With a new heuristic and specific filtering algorithms,
he improved on his own results.

Finally, let us mention the work done by G. Wetzel and F. Zabatta [22]: using
multiple threads on a 14 processor Sun system they obtained better results than the
first approach of Régin. They were, however, not able to solve problems as large as
those which Régin solved with his second approach.

The goal of this study is to propose an advanced local search approach based on
tabu search (TS) [8] for the SLSP. References of the study are results presented in
[11], [15] and [16].

The paper begins by formally describing the SLSP (82). After modeling the
problem as a constraint satisfaction problem (CSP) [20] (83), we present our tabu
algorithm (84) and compare its results with those of [11], [15] and [16] (85). Before
concluding, we discuss some observations made during this work (86).

2 Problem Description

In the rest of the paper, we will deal with the following constraints and definitions,

the same asin [11]:

» There are [T|teams (|T| even), where T isthe set of all teams. All teams play each
other exactly once (half competition);

» The season lasts [T| - 1 weeks,

» Every team plays one game in every week of the season;

» Thereare|T|/ 2 periods and, each week, one game is scheduled in every period;

» No team plays more than twice in the same period over the course of the season.
The problem then is to schedule the tournament with respect to all these

congtraints.
Table 1 below shows an example of a valid schedule for [T| = 8 teams labeled

from 1 to 8; there are 7 weeks and 4 periods.

Table 1. Example of avalid schedule for 8 teams

Weeks
1 2 3 4 5 6 7
1vs2 | 1vs3 |5vs8| 4vs7 | 4vs8 | 2vs6 | 3vs5
3vsd | 2vs8 | 1vs4 | 6vs8 | 2vs5 | 1vs7 | 6vs7
5vs6 | 4vs6 | 2vs7 | 1vs5 | 3vs7 | 3vs8 | 1vs8
4 | 7vs8 | 5vs7 | 3vs6| 2vs3 | 1vs6 | 4vs5 | 2vs4

Periods
WIN |-

As shown in Table 1, a configuration may be represented as a two-dimensional
array with weeks in columns and periods in rows. Each column satisfies the
cardinality constraint: each team appears exactly once, i.e. al the teams are



different. In each row, no team appears more than twice. There is also a global
congtraint on the array: each match only appears once, i.e. all matches are different.

3 Problem Formulation

To represent the SL SP we follow the constraint programming approach: we consider
it asa constraint satisfaction problem.

3.1 Constraint Satisfaction Problem - CSP

A congtraint satisfaction problem [20] is defined by atriplet (X, D, C) with:

* Afiniteset X of nvariables: X ={X,, ..., X.};

* A set D of associated domains: D = {D,, ... , D,}. Each domain D, specifies the
finite set of possible values of the variable X;;

* A finite set C of p constraints: C = {C,, ... , C;}. Each constraint is defined for a
set of variables and specifies which combinations of values are compatible for
these variables.

Given such a triplet, the problem is to generate a complete assignment of the
values to the variables, which satisfies all the constraints: such an assignment is said
to be consistent. Since the set of all assignments (not necessarily consistent) is
defined by the Cartesian product D, x ... x D, of the domains, solving a CSP means
to determine a particular assignment among a potentially huge number of possible
assignments.

The CSP, as it has been formalized, is a powerful and general model. In fact, it
can be used to conveniently model some well-known problems such as k-coloring
and satisfiability, as well as many practical applications relating to resource
assignment, planning or timetabling.

3.2 Formulation of the SLSP asa CSP

We will use the following notations to represent the SLSP as a constraint
satisfaction problem:
» P: setof periods, |P|=T|/ 2;
o W: set of weeks, |W|=T|-1;
e t:.teamnumbern, t,0T,1<n<|T|
o X(t,, t): schedule of the match t, vs. t,. Values of this variable type are of
(P, m W) pattern, meaning that the match is scheduled in period p,,, and week
Wi, e
The set of variablesis naturally X = {x(t,, t), 1< m<n< [T} and all domains
areequa to D = {(Poum Wnr)s Pon O P, 1< pun <P, Won OW, LW, < |W[};
OxOX, D, = D. The set C of constraints contains the following three types of
congtraints:



» Uniqueness of all teams in each week. For each teamt,, t, 0 T, 1 < n < [T|, we
impose the congtraint: WEEK(t,) < W,,,# W,,, 0 (m, q) O[1; [T, m#n, g#n
andm#q;

» No more than two matches for each team in the same period. For each team t,
t, 0T, 1< n<|T|and each period, we impose the constraint:

PERIOD(t,) = {Pmn=Pen (M, @) O[L; [T] , m#n,gZznetm#a}|<1;

» All matches are different. For each match < t,, t, >, (t,, t) O T3 t, # t, we
impose the constraint: ALLDIFF(< t,, t,>) = <t, t,>#<t,t> 0O(,t)OT?
t, #t.

'Illhe WEEK and ALLDIFF constraints are always satisfied in our algorithm.

4 Solving the SLSP with Tabu Search

Tabu search is an advanced local search method using general mechanisms and rules
as guidelines for smart search. Readers may find formal description of the method
in [8]. We now define the components of our tabu algorithm for the SLSP, called
TS SLSP.

4.1 Search Space — Configuration

As represented in Table 1, a configuration is a complete assignment of D = {(Pn,
W)y Pon O P, 1< Pon € P, Won OW, 1 <w,, < |W]} items to variables of
X={X(twt), 1<m<n<|T|}. Thus, aconfigurationisa|W|* |P| sized table, whose
items are integer couples (m, n), 1 <m <n< [T|. For [T| = 40 teams, this represents a
problem with 780 variables and 780 values per variable.

Thereare [T|/ 2* (JT| - 1) matches to be scheduled. A schedule can be thought of
as a permutation of these matches. So, for [T| teams, the search space size is
[IT]/2* (IT| - D]! In other words, the search space size grows as the factorial of the
square of [T|/ 2.

Fig. 1. Constructing initial configuration (|T| = 6)



4.2 Initial Configuration

Inlocal search algorithms, the initial configuration specifies where the search begins
in the search space. One can start with a random configuration by first creating all
the [T|/ 2* (|T| - 1) matches with respect to the ALLDIFF constraint, then randomly
assigning a match to each (w, p) couple, w O W, p O P.

We chose another way to build an initial configuration, inspired from [18]:
construct a complete graph with the first [T| - 1 teams as vertices while placing the
verticesin order to form a regular (|T| - 1)-gon (edges represent matches). Color the
edges around the boundary using a different color for each edge. The remaining
edges can be colored by assigning to each one the same color as that used for the
boundary edge parallel to it, see left drawing in Fig. 1. At each vertex there will be
exactly one color missing and these missing colors are different. The edge of the
complete graph incident to the last vertex (i.e. the last team) can be colored using
these missing colors, see right drawing in Fig. 1. Finaly, fill in week “i”, in the
initial configuration, with edges colored “i”.

Thisinitial configuration has the property of satisfying the WEEK and ALLDIFF
congtraints. The algorithm will try to satisfy the PERIOD constraint.

4.3 Neighbor hood

Let s be a configuration from the search space S. The neighborhood N: S - 2°isan
application such as for each s 0 S, s O N(s) if and only if sand s only differ by
values of a single couple of variables, with at least one in conflict (a variable is said
to be conflicting if it isinvolved in an unsatisfied constraint).

A neighboring configuration of s can be obtained by making a single swap of
current values of two arbitrary variables, with at least one conflicting in s. A move
from configuration s to a neighboring configuration s can then be described by a
couple < X(t, t), X(t, t) > i.e. swapping two matches (see Fig. 2). In addition, swaps
are made in the same week to keep the WEEK constraint satisfied.

During the search the neighborhood size always evolves with the number of
conflicts.

Weeks Weeks

2 5 1] 2]3]4] 5
12 |26 | 34881 24 1 112 26 34 56 15
46 | 13 é 14 | 36 46113251436
35 | 45| 1592> 153

Configuration s Configuration s

N
Periods
N

3135 45|16 23 24

Fig. 2. Neighborhood illustration (6 teams)



4.4 Evaluation Function

To compare, in terms of quality, two configurations s and s from S, we define an
evaluation function which is an order relation for S.

Let OccPs(p, t,) be the occurrence number of team t,, in period p, in configuration
s. The evaluation function f(s) is the total number of excess appearances of all teams
in all periods (let us call it f,(s)) i.e. the minimum number of variables to be changed
to satisfy the PERIOD constraint:

Pl 7l
(== 3 3 xpEnp)
p=1n =1 (1)

if OccR(p,t,) < 2,
Xp(S:N,p) = @ h e .S(p )
ccR(p,t,) -2 otherwise

Solving the SL SP means finding a configuration st [0 Ssuch asf(s*) = 0.

4.5 Neighborhood Evaluation

The tabu algorithm considers in general at each step the whole neighborhood. So it
is imperative to be able to quickly evaluate the cost of neighboring configurations.
To do this, we used atechnique inspired by [6].

Let d bea|X|* [X| matrix. Each entry &[x(t., t.), X(t,, t)] represents the effect of
the chosen move (swapping matches < t,, t, > and < t,, t. >) on the evaluation
function. Thus, the cost of s [0 N(s) is immediately obtained by adding the proper
entry of &to f(s) (in O(1)). To get the best neighbor, one search only a subset of the

o matrix in O(IN(s)]) time. After a move, the d matrix is updated in O(|XN|X|) time
in the worst case.

4.6 Tabu List Management

A fundamental component of TS is tabu list: a special, short-term memory that
maintains a selective history, composed of previously encountered configurations or
more generally pertinent attributes of such configurations. The aim of a tabu list is
to avoid cycling and go beyond local optima.

Entries in our tabu list are paired matches. Indeed, we make match swaps. After
swapping, the matched couple is classified tabu for the next k iterations (k, called
tabu tenure, is problem dependent), which means that reverse swap is forbidden
during that period.

Tabu tenure plays a very important role for the performance of a tabu algorithm.
If overestimated, it will perhaps incorrectly prohibit the visiting of unexplored
configurations and the method's capacity to explore the neighborhood will be
reduced. If underestimated, the method may get trapped in local optima.



After having tried various tabu tenures (randomized and bounded, dynamic, static
etc.), we chose a randomized one. For s [0 S, we define the tabu tenure k, by:
k, = rand(g) where rand(g) is a random integer from [1; g], g O [4; 10Q].

To implement the tabu list, we use a |[X| * [X| matrix with entries corresponding to
moves. Each entry stores the current iteration number plus the tabu tenure. With this
data structure, a single comparison with the current iteration number is sufficient to
know if amoveistabu.

Nevertheless, note that a tabu move leading to a configuration better than the best
configuration found so far is always accepted (aspiration criterion).

Input: |T]; {nunber of teans}
Qutput: a valid schedule or "No valid schedul e found"
var f, f*; {evaluation function and its best value
encountered so far}
s, s*; {current configuration and t he best
configuration encountered so far}
begi n
initialize the tabu list to enpty;
generate initial configuration s; {84.2}
s* = s;
f*r .= 1f(s);
while not Stop Condition do
nmake a best nove min the same week such that mis
not tabu or satisfies the aspiration criterion
introduce min the tabu list;
if (f(s) <f*) then
S*

1= s;
‘7f* 1= f(s);
else if f* has not been inproved for a sufficient
time then

‘ s = s*; {intensification}

| | set the tabu list to enpty; {diversification}
if (f* = 0) then {valid schedul e found}

| return s*;

return "No valid schedul e found";

end

Fig. 3. The TS-SLSP algorithm

4.7 Diversification — I ntensification

Intensification and diversification are useful techniques for improving the search
power of atabu algorithm.

Intensification stores interesting properties of the best configurations found so far
and to be used later. It may initiate a return to attractive regions to search them more
thoroughly. Diversification tries to direct the search to unexplored configurations.

Our TS agorithm includes a single intensification: after a certain number of
non-improving iterations, we return to the best configuration found so far. The



difficulty then is to formally determine when to go back to this best configuration,
because an underestimated interval might inadvertently stop a possibly promising
search. Values of this parameter were determined empirically in [30; 1 000Q].

We make a diversification immediately after an intensification process by
removing all tabu statuses to enable previoudy classified tabu moves.

4.8 General Algorithm

The TS-SLSP agorithm (see Fig. 3) begins with an initial configuration in a search
space S built with respect to WEEK and ALLDIFF congtraints.

Then it proceeds iteratively to visit a series of locally best configurations
following the neighborhood. At each iteration, a best move m (in the same week to
keep the WEEK constraint satisfied) is applied to the current configuration, even if
it does not improve the current configuration in terms of the value of the evaluation
function. Intensification / diversification steps are performed after a sufficient
number of non-improving moves.

Stop Condition. The algorithm stops if f(s) = 0 (a valid schedule is found) or if a
given limit is reached concerning the number of moves.

5 Computational Results

In this section, we compare results of our TS algorithm with those of [11], [15]
and [16]. Our tests were carried out on a Sun Sparc Ultra 1 (256 RAM, 143 MHz).
TS-SLSP! isimplemented in C (CC compiler with -O5 option). Tests were carried
out on problem instances including 6 to 40 teams (only those greater than 14 are
shown). The TS-SLSP algorithm was allowed to run until a maximum number of 10
million iterations.

5.1 Comparison Criteria

We used three main criteria to do the comparative study. These criteria are given

here in decreasing order of importance;

» Number |T| of teams: one algorithm is said to be more efficient than another one,
if it solvesthe SLSP with a higher [T];

» Number of moves: the algorithm'’s effort to find a solution, machine independent;

* Running time: the CPU time spent by an algorithm to carry out a given number of
moves, machine dependent.

1 For the source code of TS-SLSP, contact the authors.



5.2 Compar ative Results

McAloon et al. [11] recall that Integer Linear Programming (ILP) with CPLEX [5]
was not able to solve the SLSP for [T| = 14 teams, even when avoiding symmetries.
Nevertheless, the method is able to provide solutions for [T| < 12. They also propose
a constraint programming algorithm, implemented under ILOG Solver, which
solved the |T| = 14 problem in 45 minutes (Ultra Sparc), and was the first result
obtained with constraint programming. However, their Constraint Logic
Programming approach failed for [T| = 14. Finally, with a basic local search
algorithm, they solved the |T| = 14 problem in 10 minutes.

Gomes et al. [9] used constraint programming to solve the SLSP up to 18 teams
(in more than 48 hours) with a deterministic complete search. By including
randomness in their algorithm, they reached the same result more quickly:
approximately 22 hours for 18 teams.

In 1998, Régin presented improved results with a more elaborate approach based
on congtraint propagation [15] (let us call the approach CP1). This approach
integrates advanced techniques including symmetries elimination and new powerful
filtering algorithms based on arc consistency [3][13][14]. CP1 solves much larger
problem instances since it is able to produce valid schedules for [T| = 24 in 12 hours.

In yet another study, by using multiple threads on a 14 processor Sun system,
Wetzel and Zabatta [22] obtain better results, since schedules were generated for 26
and 28 teams.

Recently, Régin proposed another improved approach [16] (let us call it CP2)
integrating among others, a heuristic based on Euler's theorem for Latin squares.
The SLSP is also transformed into an equivalent problem by adding a dummy week
in order to quickly deduce some inconsistencies. This later approach gives the best-
known results for the SLSP, since it produces solutions for 40 teamsin 6 hours.

Table 2. Comparative results of TS-SLSP and well-known methods. A “-* sign means no
result isavailable

CP1 CP2 TSSLSP

[T]| Time |Backtracks| Time (s) |Backtracks R?fg?;i) Time Moves
16| 4.2s 1112 0.6 182 100 05s 4313
18| 36s 8 756 0.9 263 100 03s 2711
20|<6min| 72095 1.2 226 100 239s | 149356
22| 10h | 6172672 | 1.2 157 100 34.3s | 163717
24| 12h | 6391470 | 10.5 2702 90 5min 1205171
26 - - 26.4 5683 50 10.7 min|2219 711
28 - - 316 32324 50 12.5 min| 2 043 353
30 - - 138 11 895 10 22 min |3034 073
32 - - - - 10 49 min |6 387 470
34 - - - - 30 25min |2917 279
36 - - - - 10 15h |9307524
40 - - 6h | 2834754 10 54.3s | 68746




Table 2 shows the results of TS-SLSP together with those of CP1 and CP2.
Columns 2-5 give respectively, for CP1 and CP2, execution times and numbers of
backtracks. The last three columns give respectively the success ratio (number of
successful runs/ total number of runs), mean times and average numbers of moves
for successful runs of TS-SLSP.

From the Table 2, we may make several remarks. First, we observe that TS-SLSP
is much more powerful than CP1 both in terms of the size of problem instances
solved and computing efforts. Compared with CP2, TS-SLSP also manages to find
valid schedules for problem instances going up to 40 teams. We notice however that
the resolution becomes much more difficult for [T| > 28. We notice also that the
running time of the TS-SLSP algorithm for [T| = 40 is not consistent with other
results. Thisis simply explained by the stochastic nature of the TS-SLSP algorithm.
Globally, the results of TS-SLSP are consistent and its running times remain
reasonable.

6 Discussions

How to handle the different constraints of a constrained problem is an important
issue that must be answered by any neighborhood algorithm. For the SLSP, recall
that there are three types of constraints (see §3.2): WEEK, PERIOD and ALLDIFF.

As we saw previously in 84, TS-SLSP works with a limited search space whose
configurations satisfy aready the WEEK and ALLDIFF constraints. The goal of
TS-SLSPisthen to satisfy the PERIOD constraint.

We also experimented with another constraint handling technique, in which the
search space is defined by al the configurations satisfying the ALLDIFF constraint,
and the search starts with a randomized initial configuration (see 84.2). Then the
algorithm tries to satisfy the WEEK and PERIOD congtraints. In this case, the
evaluation function f'(s) used to guide the search is defined by a weighted?
summation function of the violations of the WEEK congtraint f,(s), formally
described by formula 2 below?, and PERIOD constraint f.(s) (see formula 1 in 8§4.4):
OsOSf'(g=2*1,(9 + (9.

w| 1]
fW (S) = z z XW (Svn!W)!
w=1ln=1 (2)
_[D if OccW,(w,t,) <1,
T\ (s.nw) = EDCCV\é(W,tn) -1 otherwise

2|t seems that the best weight values are 1 for PERIOD and 2 for WEEK.
3 OccW(w, t,) is the occurrence number of team t, on week w in configuration s.



The neighborhood is extended to all possible exchanges of matches (with at least
one in conflict) in the same week or in the same period or in different periods and
weeks, see Fig. 4.

The tabu tenure is weighted and dynamic: k's = a * [f.(s) + f«(5)] + rand(g),
o 0]0.1; 1]. Intensification and diversification processes are used in the same way
asin TS-SLSP.

Weeks
1 | 2 | 3 | 4 | 5 | 6 | 7
Mvs3 [Jvs[d Hvs8 [JvsH 4vs8 2vs6 3vsfH
34 [2dvs8 1vs4 6vs8 2vs5 1vgM 6vs7
swle 4 ¥SQusZNs7 3vs7 pls8 1vss
7vs8 5vs7 3vs6 2vs3 1vs6 4vsh 2vs4

Fig. 4. Extended neighborhood illustration

Periods

AWIN|F

Experimentation using this technique produces results similar to those of CP1.
Although it fails to solve the [T| > 22 problem, this technique is very fast for 22
teams: it provides solutions in less than 28 minutes (34 146 moves). When only
dealing with the PERIOD constraint, TS-SL SP outperforms results of this technique,
since it solves the SLSP up to 40 teams. The main difference between the two
approaches is the structure of the initial configuration. The technique starting with
an extra constraint to verify (the WEEK constraint) must explore a larger search
space than the other technique.

7 Conclusion

In this paper we presented a tabu algorithm (TS-SLSP) for the sports league
scheduling problem. The algorithm is based on a CSP formulation of the SLSP and
includes the following main features:

» asimple swap neighborhood;

* efficient data structures for fast neighborhood search;

» adynamic tabu tenure;

» asimpleintensification-diversification process.

TSSLSP was tested on problem instances going up to 40 teams. The
experimental results show that TS-SLSP largely outperforms some previoudy
devel oped approaches (ILP[11], basic LS[11] and constraint programming [9][15]).
Indeed, while these approaches are limited to instances of 24 teams, TS-SLSP is
able to find a schedule for instances going up to 40 teams. This result compares well
with the best-known approach, which combines well-elaborated constraint
propagation algorithms and a non-trivial formulation of the initial problem [16].

At the same time, the computing times required by TS-SLSP are much greater
than those obtained using the most efficient algorithm. Nevertheless, there is
certainly plenty of room for improvement in TS-SLSP. One possible enhancement
would be to integrate more elaborate intensification and diversification mechanisms,
another would be to have a close study of configuration structuresin order to devise



clever neighborhoods and constraint handling techniques. It would also be
interesting to envisage a combination of some advanced constraint propagation
techniques with tabu search.

This work underlines once again the importance of efficient data structures for
the high performance of a TS algorithm. It also confirms that parameter setting is
crucial for obtaining quality solutions.

The TS-SLSP may also be adaptable to other sports scheduling problems e.g. the
minimization of breaks (two consecutive home or away matches) [21] and those
studied in [17]. Let us also mention that TS has already proven efficient for solving
some sports scheduling problems, with constraints of various types. A hybrid tabu
search has been proposed [4] to respond to the National Hockey League's
scheduling problem, which underlines the effectiveness of a TS / genetic algorithm
combination; the skilful mix of elements of the two methods produces better results
than those of separately considered methods. All these studies suggest that a
metaheuristic approach (e.g. TS, simulated annealing, genetic hybrid) has good
potential for solving various planning and scheduling problems related to sporting
events.*
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Appendix:

The table in the next page gives a solution to the Sports L eague Scheduling Problem
found by TS-SLSP for 40 teams.
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